Supporting Competency Question-driven Ontology Authoring

Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z.
Pan, Kees van Deemter
University of Aberdeen, UK
Robert Stevens
University of Manchester, UK

Ontology

- Provide schema-level knowledge to linked data
 - Specifying vocabularies
 - E.g. Pizza, Food, PizzaTopping
 - Specifying relations between terminologies
 - E.g. Pizza SUBCLASSOF Food, Pizza SUBCLASSOF hasTopping SOME PizzaTopping
- Modern ontology technologies are quite complex
 - Logic underpinning: Description Logics
 - Representation languages: RDF(S), OWL
 - Query language: SPARQL
 - Rule language: SWRL, RIF

Ontology Authoring

- Is difficult for authors who are unfamiliar with DLs, RDF, SPARQL, OWL, etc.
 - Difficult to specify and verify satisfaction of requirements
- Our vision: Competency Question-driven Ontology Authoring

CQs in Ontology Authoring

•A typical CQ: Which pizza has some cheese topping?

- Questions that people expect the constructed ontologies to answer
- Useful for novice users:

- in natural languages
- about domain knowledge
- requires little understanding of ontology technologies

CQs in Ontology Authoring •A typical CQ: Which pizza has some cheese

topping?

- Existing work
 focused on
 answering CQs
 directly
 - But is the answer meaningful?
- The ability to answer CQs meaningfully can be regarded as a functional requirement of the ontology

- Answer: empty set
- Possible scenarios

. . .

- Pizza does not exist
- Cheese topping does not exist
- Pizzas are not allowed to have cheese topping
- The ontology has not been populated with any cheesy pizza yet

CQs in Ontology Authoring

•A typical CQ: Which pizza has some cheese topping?

- A CQ comes with certain *presuppositions*
 - Some conditions the speakers assume to be met
- A CQ can be *meaningfully* answered only when its presuppositions are satisfied

- Classes *Pizza*, *CheeseTopping* should occur in the ontology
- Property has(Topping) should occur in the ontology
- The ontology should allow Pizza to have CheeseTopping
- •

 Satisfiability of CQ presuppositions can be verified by authoring tests generated based on its features and elements

- Classes Pizza, CheeseTopping should occur in the ontology
 - [CE1], [CE2] should both *occur* in the class vocabulary
- Property has(Topping) should occur in the ontology
 - [OPE] should *occur* in the property vocabulry
- The ontology should allow Pizza to have CheeseTopping
 - *CE*1 □ ∃*OPE*.*CE*2 should be satisfiable

•

A Competency Question-driven Ontology Authoring Pipeline

Supporting the CQOA Vision: Basic Ideas

- Using a dialogue-style interface, allowing users to
 - Perform authoring with speech acts in controlled natural languages
 - Review the authoring history and consequences
- Providing feedbacks upon user action so that
 - Users immediately know the consequence of authoring actions
 - In terms of entailments and AT satisfiability
- Registering different reasoning tasks and invoking reasoner on the fly to
 - Responsively update entailment results
 - Constantly monitor satisfiability of ATs

Prototype Interface

<u>ع</u>	What If prototype Version: 1.5	- 🗆 🗙
Import Tools		
Class hierarchy • Thing • CakeFilling • Food • Cake • PizzaBase • PizzaBase • Pizza • Nothing Class	History log User: Checking Class: Pizza SubClassOf: Food System: this axiom is an asserted axiom. User/System Dialogue History	 Competency questions warning list Competency Questions What pizza has meaty topping? What pizza has which fish topping? What pizza has tomato topping? What pizza has tomato topping? The class [TomatoTopping] cannot be object of [hasTopping] property. The class [Pizza] could have [hasTopping] property. Class [TomatoTopping] exists. ObjectProperty [hasTopping] exists. Class [Pizza] exists. What cake has which dairy topping? The class [DairyTopping] can be object of [hasTopping] property. The class [Cake] cannot have [hasTopping] property. Class [DairyTopping] exists.
Hierarchy		 ObjectProperty [hasTopping] exists. Class [Cake] exists. What cake has which cake filling? The class [CakeFilling] cannot be object of [hasFilling] property. The class [Cake] cannot have [hasFilling] property. Class [Cake] exists. ObjectProperty [hasFilling] doesn't exsit. Class [CakeFilling] exists.
Description of class Disjoint with Cake and Pizza and PizzaBase Has the following Subclasses Dairy Popping and FishTopping and FruitTopping and HarbSpiceTopping	Input box Options: Select Adding axiom Class: Pizza SubClassOf: User Input	Competency Questions

Challenges and Solutions

- Which controlled natural language to use?
 - Comprehensive enough for ontology authoring
 - Easy to learn and understand
 - Easy to parse
- Currently using Manchester Syntax
 - An OWL serialisation, covering all OWL expressiveness
 - Semi-natural
 - Parser available
- User selects a speech acts and then input the CNL formula
- Extending to OWL Simplified English in the future

Input box		
input box		
Options:	Select	
Modifying axiom ObjectProperty: hasTopping Domain: Pizza to		
ObjectProperty: hasTopping Domain: Pizza or Cake		

User: Modifying axiom ObjectProperty: hasTopping Domain: Pizza to ObjectProperty: hasTopping Domain: Pizza or Cake System: The requested action has been successfully completed. Some of the changes are listed below. Added axioms: hasTopping Domain Cake or Pizza Deleted axioms: hasTopping Domain Pizza Inferred added axioms: CheeseyVegetableTopping EquivalentTo Nothing Inferred deleted axioms: EquivalentClasses: CheeseyVegetableTopping, CreamCake, Nothing

Challenges and Solutions

- How to generate the feedback to users?
 - What?
 - When?
 - Where?
- Current feedback mechanism
 - What:
 - Static: the status of the ontology and CQ/AT
 - Dynamic: the consequence of authoring action
 - When:
 - Dynamic: when things *change*
 - Where:
 - Written feedback in dialogue history
 - Graphical changes in CQ/AT and concept hierarchy

CON User: Modelling element addition ObjectProperty <hasFilling> System: Modelling element was added. Passed tests: ObjectProperty [hasFilling] exists The range of [hasFilling] can be [CakeFilling] Competency Questions Competency Questions What pizza has meaty topping? What pizza has which fish topping? What pizza has tomato topping? What pizza has tomato topping? The class [TomatoTopping] cannot be object of [hasTopping] property. The class [Pizza] could have [hasTopping] property. Class [TomatoTopping] exists. ObjectProperty [hasTopping] exists. Class [Pizza] exists.

- What cake has which dairy topping?
 - The class [DairyTopping] can be object of [hasTopping] property.
 - The class [Cake] cannot have [hasTopping] property.
 - Class [DairyTopping] exists.
 - ObjectProperty [hasTopping] exists.
 - Class [Cake] exists.
- What cake has which cake filling?
 - The class [CakeFilling] cannot be object of [hasFilling] property.
 - The class [Cake] cannot have [hasFilling] property.
 - Class [Cake] exists.
 - ObjectProperty [hasFilling] doesn't exsit.
 - Class [CakeFilling] exists.

Challenges and Solutions cont.

- How to ensure reasoning efficiency
- Currently using approximation-based reasoner TrOWL
 - Approximate OWL 2 DL ontologies into OWL 2 EL ontologies
 - Reduce reasoning complexity
 - Reasoning is automatic and transparent to users
- Moving towards stream reasoning
 - Update only the reasoning results affected by the changes of ontology

Summary of the Work

- An ontology authoring environment can be developed to support Competency Question-driven Ontology Authoring
 - Using a dialogue-based interface
 - Generating informative, comprehensive and intuitive feedbacks
 - Running a reasoner on the fly
- Future challenges
 - Extending the CQ features and presuppositions
 - Investigating different CNL, e.g. OWL Simplified English
 - Developing more informative selection/grouping/ordering strategies for feedbacks
 - Investigating how to provide explanation along with feedbacks
 - Investigating how to provide guidance in addition to feedbacks

Thank You!

- This research has been funded by EPSRC project: WhatIf: Answering "What if..." questions for Ontology Authoring.
- The work on CQs has been published:
 - Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter and Robert Stevens. Towards Competency Question-driven Ontology Authoring. ESWC2014

