Supporting Competency Question-driven Ontology Authoring

Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter

University of Aberdeen, UK

Robert Stevens

University of Manchester, UK
Ontology

• Provide schema-level knowledge to linked data
 - Specifying vocabularies
 • E.g. Pizza, Food, PizzaTopping
 - Specifying relations between terminologies
 • E.g. Pizza SUBCLASSOF Food, Pizza SUBCLASSOF hasTopping SOME PizzaTopping

• Modern ontology technologies are quite complex
 - Logic underpinning: Description Logics
 - Representation languages: RDF(S), OWL
 - Query language: SPARQL
 - Rule language: SWRL, RIF
Ontology Authoring

- Is difficult for authors who are unfamiliar with DLs, RDF, SPARQL, OWL, etc.
 - Difficult to specify and verify satisfaction of requirements
- Our vision: Competency Question-driven Ontology Authoring
CQs in Ontology Authoring

• A typical CQ: Which pizza has some cheese topping?

• Questions that people expect the constructed ontologies to answer:
 - in natural languages
 - about domain knowledge
 - requires little understanding of ontology technologies

• Useful for novice users:
CQs in Ontology Authoring

• A typical CQ: Which pizza has some cheese topping?
 - Existing work focused on answering CQs directly
 • But is the answer meaningful?
 • Answer: empty set
 • Possible scenarios
 - Pizza does not exist
 - Cheese topping does not exist
 - Pizzas are not allowed to have cheese topping
 - The ontology has not been populated with any cheesy pizza yet
 - ...

• The ability to answer CQs meaningfully can be regarded as a functional requirement of the ontology.
CQs in Ontology Authoring

• A typical CQ: Which pizza has some cheese topping?

• A CQ comes with certain presuppositions
 - Some conditions the speakers assume to be met

• A CQ can be meaningfully answered only when its presuppositions are satisfied

• Classes Pizza, CheeseTopping should occur in the ontology
• Property has(Topping) should occur in the ontology
• The ontology should allow Pizza to have CheeseTopping
• ...
CQs in Ontology Authoring

• A typical CQ: Which pizza has some cheese topping?

• CQs usually have clear and relatively simple syntactic patterns
 – We investigated 145 CQs from two corpora and verified with 55 CQs from existing work

• Features and elements can be extracted

- Feature: Type of question
- Element: Class expression CE1
- Element: Object property expression OPE
- Feature: Binary predicate
- Element: Class expression CE2
- Feature: Type of question
CQs in Ontology Authoring

• A typical CQ: Which pizza has some cheese topping?

• Satisfiability of CQ presuppositions can be verified by authoring tests generated based on its features and elements

• Classes Pizza, CheeseTopping should occur in the ontology
 – [CE1], [CE2] should both occur in the class vocabulary

• Property has(Topping) should occur in the ontology
 – [OPE] should occur in the property vocabulary

• The ontology should allow Pizza to have CheeseTopping
 – $CE1 \cap \exists OPE . CE2$ should be satisfiable

• ...

A Competency Question-driven Ontology Authoring Pipeline

- CQs in CNL and of certain patterns
- Features and elements
- Authoring Tests
- Test Results
- Automatic Test-runner
- Ontology
- Requirements
- Ontology Authoring
Supporting the CQOA Vision: Basic Ideas

• Using a dialogue-style interface, allowing users to
 - Perform authoring with speech acts in controlled natural languages
 - Review the authoring history and consequences

• Providing feedbacks upon user action so that
 - Users immediately know the consequence of authoring actions
 - In terms of entailments and AT satisfiability

• Registering different reasoning tasks and invoking reasoner on the fly to
 - Responsively update entailment results
 - Constantly monitor satisfiability of ATs
Prototype Interface

Class Hierarchy

User/System Dialogue History

Verbalise

Competency Questions

User Input
Challenges and Solutions

• Which controlled natural language to use?
 – Comprehensive enough for ontology authoring
 – Easy to learn and understand
 – Easy to parse

• Currently using Manchester Syntax
 – An OWL serialisation, covering all OWL expressiveness
 – Semi-natural
 – Parser available

• User selects a speech acts and then input the CNL formula

• Extending to OWL Simplified English in the future
Challenges and Solutions cont.

• How to generate the feedback to users?
 - What?
 - When?
 - Where?

• Current feedback mechanism
 - What:
 • Static: the status of the ontology and CQ/AT
 • Dynamic: the consequence of authoring action
 - When:
 • Dynamic: when things change
 - Where:
 • Written feedback in dialogue history
 • Graphical changes in CQ/AT and concept hierarchy
Challenges and Solutions cont.

• How to ensure reasoning efficiency

• Currently using approximation-based reasoner TrOWL
 – Approximate OWL 2 DL ontologies into OWL 2 EL ontologies
 – Reduce reasoning complexity
 – Reasoning is automatic and transparent to users

• Moving towards stream reasoning
 – Update only the reasoning results affected by the changes of ontology
Summary of the Work

• An ontology authoring environment can be developed to support Competency Question-driven Ontology Authoring
 - Using a dialogue-based interface
 - Generating informative, comprehensive and intuitive feedbacks
 - Running a reasoner on the fly

• Future challenges
 - Extending the CQ features and presuppositions
 - Investigating different CNL, e.g. OWL Simplified English
 - Developing more informative selection/grouping/ordering strategies for feedbacks
 - Investigating how to provide explanation along with feedbacks
 - Investigating how to provide guidance in addition to feedbacks
Thank You!

• This research has been funded by EPSRC project: *WhatIf: Answering “What if...” questions for Ontology Authoring*.
• The work on CQs has been published: